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Methods

1 MOTIF EXTRACTION ALGORITHM (MEX)

MEX is a motif extraction algorithm that extracts statistically significant motifs from
sequential data. MEX is a data driven unsupervised algorithm, hence does not need any
preprocessing of the data or additional information apart from the data set itself.
Furthermore, MEX finds motifs that are not necessarily over-represented in the data.
MEX was originally developed in a linguistic context, as a distillation tool for extracting
words from corpora of natural language. As more intuitive, let us first describe the
algorithm in its original context.

Consider a corpus of sentences, whose word delimiters have been removed (such as
spaces, capital letters, punctuations, etc.). The problem at hand is to uncover the words
that have originally constructed the sentences. MEX receives as an input such corpus,
consisting of many sequences of a given finite alphabet of size N (e.g. N=26 letters in the
English alphabet, N=20 amino acids in proteins and N=4 nucleic acids in the case of
DNA). The algorithm uses a directed graph, whose vertices, V, are composed of the
letters of the given alphabet, in addition to a ‘begin’ and an ‘end’ vertices. A set of
ordered pairs of vertices (directed edges) represent the order in which the letters appear in
the corpus. For example, the edge e(t,h), represents a connection from the vertex ‘t’ to the
vertex ‘h’, which means that the letter ‘h’ appears at some point along the corpus after the
letter ‘t’. MEX loads the given corpus onto a directed graph, one sentence after the other.
The edges representing each sentence are built, starting with the ‘begin’ vertex, followed
by the letters composing the sentence, one after the other, and ending with the ‘end’
vertex. This way, ordered paths are created in the graph, such that each sentence is
represented by a path. Each path is saved by MEX and will be used as a search path for
patterns. This procedure is demonstrated in figure 1.1.
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Figure 1.1 MEX loads the corpus onto a directed graph, one sentence after the other. The graph is
composed of vertices representing the letters of the given alphabet, in addition to two vertices
representing the beginnings and the endings of sentences (A). One sentence at a time, directed edges
are added to the graph, representing the order in which letters appear in each sentence (B-D). The
ordered edges composing a sentence are considered a path along the graph. In this example, four
paths are loaded onto the graph: ‘alicewas’ (blue path), ‘isalice’ (light green path), ‘saidalice’
(turquoise path) and ‘alicein’ (red path), one after the other.



Once the entire corpus has been represented as search paths on a directed graph, the
algorithm starts searching for statistically significant patterns. Intuitively, for each search
path MEX looks for sub-paths that may be considered as candidates for being significant
patterns. A sub-path that represents a significant pattern is expected to be shared by other
paths throughout the graph, such that these paths will converge into the sub-path at its
first vertex, form a bundle along the sub-path and scatter after the sub-path’s last vertex.
This follows the assumption that at different instances of a given word throughout the
corpus, after the word ends, it is likely to find many different possible words following it.
In such a case many paths will form a bundle along the sub-path representing the word
and scatter immediately after it ends. The vertex after which such a divergence occurs
may be considered as the last vertex of the pattern. A similar notion underlies the way
MEX searches the start points of patterns, by looking for a divergence of a bundle while
going leftwards through a search path. Figure 1.2 demonstrates this idea. The four paths
in figure 1.2 converge and form a bundle along the sub-path ‘a—l—i—c—e’, after which
they diverge.

This can be rephrased into a probabilistic language; for each search path (sentence) that is
to be explored for patterns, two probability functions are defined, based on information
inheres in the complete graph. The first one, Prign, 1s the right moving ratio of the
through-going flux of paths to the incoming flux of paths, which varies along the search
path. Starting at the vertex e; we define Prign; at € as:

PRight (el ,e, ) = p(€2 | e, ) = total no. of paths passing frf)m e toe,
total no. of paths entering e,

At e3 Prign becomes:

PRight (el’e3): p(e3 | elez):

total no. of paths passing from e; through e, to e;
total no. of paths passing from e, to e,

And generally:

total no. of paths passing from e; up to e;.; and continue to ¢;

P, (e. e.): (e. ee. e . e, ):
Right 2127 P j| e i total no. of paths passing from e; up to ;.

Similarly, a second function, Py, 1s defined as we proceed leftward from some vertex e;
down the search path towards the vertex e; and examine the left-going ratio of the
through-going flux of paths to the incoming flux of paths:

_ _ total no. of paths passing from e; to e;
PLeﬁ(ej’ei)_p(ei | €€ ”'ej—lej)_ patis passing —1
total no. of paths passing from e;,, to e
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Figure 1.2 A partial view of the graph used by MEX. The search path no. 1, ‘alicewas’ (blue line),
shares the sub-path ‘a—l—i—c—e’ with three other paths: ‘isalice’ (2), ‘saidalice’ (3) and ‘alicein’
(4). The four paths form a bundle that may constitute a significant pattern. The conditional
probabilities Pg;qy and Py, originating at the vertices ‘a’ and ‘e’, respectively, are illustrated for the
example shown here. A sharp drop in the right moving probability, Pz, indicates that the paths
constructing the bundle have scattered, thus may denote the end of the pattern. Similarly, a sharp
drop in Py .« may indicate the beginning of the pattern, hence reveal the pattern ‘alice’.

Vertex Conditional Probability Expression Pright
a P(a) = 8770/ 109625 0.08
| P(al | a) = 1046/ 8770 0.12
i P( ali | al ) = 486 / 1046 0.45
C P( alic | ali ) = 397 / 486 0.85
e P( alice | alic ) = 397 / 397 1
w P( alicew | alice ) = 48 / 397 0.12
a P( alicewa | alicew ) = 21 / 48 0.44
s P( alicewas | alicewa ) = 17/ 21 0.81
b P( alicewasb | alicewas ) =2/ 17 0.12
e P( alicewasbe | alicewasb ) =2/ 2 1
g P( alicewasbeg | alicewasbe ) =2 /2 1

Table 1.1 Calculating right-going conditional probebilities for the search path ‘alicewasbegining...’.
Probablities are calculated for a given serach path, based on information inheres in the entire graph.
The corpus used in this example was the sentences from Alice in wonderland, by Lewis Carroll.



MEX calculates Prign from different starting points to each vertex down the search path.
Going rightwards through a sub-path that represents a significant pattern, it is expected
that Prigne Will first increase since other paths join the search path to form a coherent
bundle, and then decrease as many paths leave the search path.

In order to demonstrate this, let us examine as a toy problem the corpus of Alice in
wonderland, by Lewis Carroll. MEX has received as an input the sentences within Alice
in wonderland, after all word delimiters have been removed. Going through the first
search path ‘alicewasbeginningtogetverytired...” MEX calculates the rightward-going
probabilities, Prigni, along the path, as demonstrated at table 1.1. MEX starts at the first
vertex ‘a’ and calculates the probability of its appearance in the corpus, Prign(a); as ‘a’

appears in 8770 cases out of the total of 109625 letters in the corpus, Prign(a)=qeees =0.08.

MEX continues to the next vertex ‘I’, calculating the probability of its appearance after
the previous vertex, i.e. Prignd(alla); in this case, ‘I’ appears 1046 times after the 8770

instances of ‘a’, hence Prign(alja)=15% =0.12. MEX continues calculating the rightward-

going probabilities Prigni(alilal), Prign(aliclali) and so on, up to the end of the search path.
As can be seen in table 1.1, the rightward-going probabilities initially rise and then drop
sharply. Such a dramatic drop may occur owing to the sudden divergence of a coherent
bundle, and will be considered as a candidate for terminating a pattern.

We will define the end of a motif as the vertex after which a dramatic drop in the right-
moving probabilities is apparent (expressing the divergence of edges from that vertex),
and the beginning of a motif as a dramatic drop in the left moving probabilities
(expressing the convergence of edges to that vertex).

Formally, let us define a “decrease ratio”:

Prig (ei € )
Dyii\e;se; )=
e 507" p
Right \€i5€
PLeft(ej’ei)
D, yle;.e )=
J i P
Lefi \€5 €141

We will declare ¢;.; as a candidate end point of the pattern if Dg;gn€;,€;) 1s smaller then a
preset cutoff parameter n<1. Similarly, e;;; will be declared as candidate start point of a
pattern if Dy .z(ej,ei)<n.

The statistical significance of the decreases in Prigh¢ and Picr must be evaluated. Prigh
and P can be regarded as variable-order Markov probability functions. We can define
their significance in terms of a null hypothesis stating that Prigni(€i,€) > NPrigni(€i,€j-1) and
Pre(ej,ei) > MPren(ej.ei+1), and require that the p-values of both Dggn(eiej)<n and
Dye(ej,ei)<n be, on average smaller than a preset threshold parameter a<I.

A bundle of coinciding paths whose end-points obey these significance conditions is
declared as a possibly significant pattern. Given a search path, we calculate both Prign
and Pz from all of the possible starting points, traversing each path leftward and
rightward, correspondingly. This technique defines many search-sections, which may be
candidates for significant patterns. The most significant ones of these candidates are
returned as the outcome patterns for the search path in question.



2 EXPRESSION COHERENCE (EC) METHOD

Rational

The Expression coherence (EC) score is a measure of how clustered a set of genes is in
expression space. It may be defined for any gene set for which expression profiles are
available. Given an expression profile of N time points for M genes, each gene can be
thought of as a point in an N dimensional space, where the ith dimension has the
expression level of the gene at the ith time point (Figure 2.1). Given a set of genes, one
wishes to determine whether they are tightly clustered, or rather spread "all over the
place". One way to accomplish this could be to calculate the "center of mass" of the cloud
of genes and then sum over distances of each gene from it (other variations may be to
sum over squares of such distances, take standard deviation around that mean etc). Yet,
this measure has a clear shortcoming - in cases where the gene cluster is split, say to two,
equally sized very tightly clustered subsets, that are yet remote from one another, any
deviation-from-mean score will be low. This fails to capture the unique substructure of
this gene set, which is composed of two tight sub-clusters. The intuitive reason why this
gene set is 'impressive' is that out of P=M*(M-1)*0.5 gene pairs in it p=(M/2)*((M/2)-1)
pairs are close (defined below) to each other. So the ratio p/P is a good measure for how
tight the cluster is . This is the expression coherence score (see figure 2.1 for illustration).

Biological relevance

Applying the EC score to a set of genes that share a given motif in their promoters, gives
a measure of the extent to which the motif may influence expression. Moreover it allows
to functionally annotate the motif, by describing the biological conditions in which it
governs coherent expression, along with the regulatory effect it exerts (e.g. increased
expression in response to a particular stress, or peak in expression at a specific pint
during cell cycle ). Such analyses can be performed online for the S. cerevisiae genome,
via the Motif Analysis Workbench (Lapidot and Pilpel 2003) at
http://longitude.weizmann.ac.il/services.html

Algorithm

Given a gene set S , we compute the Euclidean distances between the centered and
variance-normalized expression profiles of each of its P=|S[*(|S|-1)*0.5 gene pairs. The
EC score is defined as p/P where p is the number of gene pairs whose Euclidian distance
is smaller than a threshold distance (D). D is determined based on the distribution of pair-
wise distances between expression profiles of all genes in the genome (or more precisely
of all genes for which expression level was measured). The original definition of the EC
score (Pilpel et al Nat. Genet. 2001) used the 5th percentile as the cutoff for defining
“close” expression profiles, but other cutoffs may be applied.

‘{gi,g#i € S}: ExpDist(g;,g;) < D‘
|S| % QS| —1)+2

EC(S)=



Figure 2.1 EC scores of different scenarios. To illustrate how the EC score is used to measure the
extent to which genes are clustered in expression space, we show four scenarios; each disc displays
gene sets embedded in a putative expression space. In the first scenario the genes are evenly spread in
expression space, no two genes are closer than the threshold distance D, and thus the EC sore is 0. In
the second scenario, all genes, but one are tightly clustered and thus the EC score is high, 10/15
possible gene pairs are closer than the threshold D. In scenarios 3 and 4, two tight clusters are
observed. The EC score is the same for both cases, despite the fact that the clusters in scenario 3 are
closer to one another. This is because in both cases only genes within each of the two subsets are
closer than the threshold (20/45 gene pairs) whereas any two genes belonging to different subsets are
further away than the threshold. Measures based on distance from the center of mass would not
capture the sub-cluster structure depicted in scenarios 3 and 4.

Estimation of EC Score Significance

The significance of an EC score calculated for a set of genes, relies on the set size and on
the analyzed condition. Thus for each of the expression time series experiments and for
each gene set sizes (varying from 3-100 genes), we selected 100,000 random gene sets
and computed an EC score for each such set at each cutoff definition. We define the p-
value of a given EC score as the fraction of random sets (of the same size and in the same
condition) that scored similarly or higher (Note that this sets a lower bound of 10-5 on the
significance that can be assigned to a given EC score). Since we assume that for a given
EC score the probability to get the same score for random sets of genes drops with the set
size, gene sets larger than 100 are assigned an upper bound approximated p-value, using
the randomly sampled sets of size 100.

For large sets of genes even a small deviation from an EC score of 0.05 (the mean value
for random sets) can be statistically significant, whereas for very small sets large
deviations from an EC score of 0.05 can be expected purely by chance, as demonstrated
in (http://bioportal.weizmann.ac.il/~lapidotm/rMotif/html/doc/ECscore.html).




3 EXPRESSION DATA

Table 3.1

Experiment short name

Experiment name'

Cell cycle (1) ExpressDB Cho - cell cycle

Cell cycle (2) ExpressDB Spellman - cell-cycle alpha

Cell cycle (3) ExpressDB Spellman - cell-cycle cdc15

Cell cycle (4) ExpressDB Spellman - cell-cycle cdc28

Cell cycle (5) ExpressDB Spellman - cell-cycle eluteration
Sporulation ExpressDB Chu - sporulation

MapK ExpressDB - MapK

Diaux shift ExpressDB Gasch environmental response - diaux shift
YPD (1) ExpressDB Gasch environmental response - YPD1
YPD (2) ExpressDB Gasch environmental response - YPD2

X media vs. carl

ExpressDB Gasch environmental response - x media vrs carl

YPx media vs. car2

ExpressDB Gasch environmental response - YPx media vrs car2

Nitrogen depletion ExpressDB Gasch environmental response - Nitrogen Deplation
Amino acid starvation ExpressDB Gasch environmental response - Amino Acid starv
Acid ExpressDB Environmental response - Acid

Alkali ExpressDB Environmental response - Alkali

Diamide ExpressDB Gasch environmental response - diamide

Hydrogen Peroxide (H202) ExpressDB Environmental response - Peroxide

Constant H202 ExpressDB Gasch environmental response - constatnt h202
Menadione ExpressDB Gasch environmental response - Menadione

NaCl ExpressDB Environmental response - NaCl

Hypo-osmotic ExpressDB Gasch environmental response - Hypo-osmotic

DTT (1) Eisen - dtt

DTT (2) ExpressDB Gasch environmental response - DTT1

DTT (3) ExpressDB Gasch environmental response - DTT2

Sorbitol (1) ExpressDB Environmental response - Sorbitol

Sorbitol (2) ExpressDB Gasch environmental response - sorbitol

DNA damage Jelinsky - DNA Damage

Cold Eisen - cold

Heat shock (1) ExpressDB Environmental response - Heat

Heat shock (2) Eisen - heat

Heat shock (3) ExpressDB Gasch environmental response - 37-25 shock

Heat shock (4) ExpressDB Gasch environmental response - Heat Shock 1

Heat shock (5) & sorbitol ExpressDB Gasch environmental response - hs 29-33 1m sorbitol
Heat shock (6) ExpressDB Gasch environmental response - hs 29-33

Heat shock (7) ExpressDB Gasch environmental response - hs 29-33 No sorbitol
Heat shock (8) ExpressDB Gasch environmental response - Heat Shock2 (3 time zero)
Heat shock (9) ExpressDB Gasch environmental response - hs various temp to 37¢

Various temp growth

ExpressDB Gasch environmental response - various temp growth

Various temp steady state

ExpressDB Gasch environmental response - var temp steady state

Whole-genome mRNA expression data of 40 time series experiments in S. cerevisiae, were obtained from

ExpressDB (http://arep.med.harvard.edu/cgi-bin/ExpressDByeast/EXDStart). These time series represent a wide range

of natural (e.g. cell cycle) and perturbed conditions. This set of conditions was utilized by us before (Garten et al.
Nucleic Acids Res 2005) and a complete list of the conditions is available at
http://longitude.weizmann.ac.il/TFLocation/conditions_explist.html




4 CLUSTERING ALGORITHM

We have formulated an iterative method for clustering motifs, according to their
sequences and EC scores information. We first initiate clusters by gathering motifs that
share some building blocks, or “seeds'. Then, a series of iterations improves the clusters,
using various procedures detailed below. The clusters refinement steps include the
addition and removal of motifs from existing clusters and splitting and merging of
clusters. We have quantified the quality of clusters using several criteria associated with
sequential patterns and EC score patterns of the motifs. The metrics as well as the
refinement steps are listed below.

The clustering algorithm may be used to cluster any type of sequential data that are
linked to numerical data. The input to the algorithm is a set of sequences of a given
alphabet (e.g. motifs) and a complementary set of vectors (e.g. EC vectors), holding an
additional information that needs to be taken into account in the clustering process.

Our clustering method may be considered ‘fuzzy’ in the sense that single motifs may
belong to several clusters. Additionally, not all motifs must be clustered and may be left
as singletons.

Initiating clusters by seeds

Our set of motifs was scanned to find short strings of nucleotides (of length 6) that appear
within at least three motifs, to be called “seeds'. Selecting all motifs that contain a given
seed defines a preliminary cluster.

Pruning clusters to increase EC tightness

For each motif one defines an EC vector of length 40 whose entries specify the p-values
of significantly successful EC experiments (that had passed the FDR criterion). Let us
define the space of all these vectors as EC space and define an EC divergence measure
for a cluster of motifs as the average distance of all pairs of its EC vectors. In order to
decide whether to eliminate a motif from a given cluster, we ask whether its presence
increases the divergence of the cluster. To decide whether a motif m should be eliminated
from a cluster M., we compare the EC divergence of M. with the empirical distribution
of EC divergence scores resulting from replacing m with every one of the motifs that lie
outside the cluster M. (that is, with a background sample M3). The motif will be pruned
from the cluster if it does not significantly reduce the cluster’s EC divergence, in
comparison to motifs from the random background. The deletion of motifs from a cluster
occurs after all motifs have been tested, thus the order of tested motifs does not affect
their chances of remaining in the cluster. A pseudo code describing this procedure is
available in box 4.1. An example is shown in Figure 4.1.



AAACGCGAAAA

200 | T

AAAACGCGAA
AAACGCGA
AAACGCGAA
ARMACGCGAAA
AACGCGA 1
AACGCGAA
AACGCGAARA
ACGCGAA
ATCGCGAA
100 GACGCGA
GACGCGAA
GACGCGAAA
ACGCGAC
50 TCGCGAAA
CGCGAAARA

150

0 i
0.1 0.12 0.14 0.16
EC divergence score

Figure 4.1 An example for testing the contribution of a specific motif to the cluster’s tightness. The
EC-divergence score of the cluster including the motif AAACGCGAAAA (black triangle) is
compared to the empirical distribution of EC-divergence of clusters, in which the motif in question
has been replaced with random motifs (histogram). Our null hypothesis claims that the motif does
not reduce EC-divergence of the group (which is equivalent to saying that the motif harms the
tightness of the cluster). In this example, however, the divergence-score of the cluster with the motif
included in it is very small. Hence, we can reject the null hypothesis with a probability value of 0.001
and include the motif in the cluster.

Box 4.1: Pruning clusters to increase EC tightness

Given a set M of motifs, their EC scores vectors, EC,_,, € R, and two disjoint subsets,
M.,M, c M (the cluster in question and a background subset of motifs, respectively), we wish to
eliminate from cluster M . motifs that increase its EC divergence. We will test the contribution of M . ’s

motifs to its EC divergence, by comparing them to M ,’s motifs contribution to M .’s EC divergence.

Pseudo code:
1. Calculate the EC distance between every pair of EC vectors in M .UM ,:

ECdist; =avg(|EC,—EC, |) ;i,jeM .UM,
Calculate M . ’s divergence score: DivScore,, =avg(ECdist;) ;i<jeM,.
Create a new subgroup M . by replacing the i’th motif of A/ . with the j’th motif of M ,.

Calculate M . ’s divergence score.

@ o= BN

Repeat steps 3, 4 foralli e M., j e M, inorder to examine the effect of each motifi on M .’s

tightness.
6. For each motifj € M ., generate the empirical distribution of divergence scores, as found in the

replacement of motif ; with every motif j € M ,.
7. For each motifi € M ., calculate the p-value of getting the divergence score of M . by chance.

8. Compare each p-value to a preset significance value & .
9. Eliminate motifs that are not significantly reducing the divergence of the group in comparison to the
randomly sampled motifs.




Expanding clusters

We search for new motifs to be added to the cluster without increasing its EC divergence.
To decide whether a motif m should be added to a cluster M. we compare the EC
divergence resulting from its addition (M +m) with the empirical EC divergence
distribution resulting from additions of each of the motifs lying outside M, (that is, in a
background sample Mj), one at a time.

At the same time we also require sequential similarity of the new motif to the ones that
belong to the cluster. The sequential distance between motifs is defined as the edit
distance of their best alignment, not allowing gaps. The sequential distance score, D, is
normalized between 0 and 1, such that D=0 if the short motif is fully contained in the
long one and D=1 if the motifs have no match at all.

A cluster will be expended by motifs that keep its tightness, as well as being strongly
similar to the cluster by sequence. The addition of motifs to a cluster occurs after all
motifs in M have been tested, thus the order of tested motifs does not affect their chances
of being added to the cluster. A pseudo code is available in box 4.2.

Box 4.2: Expending clusters

Given a set M of motifs, their EC scores vectors, EC,_,, € R* and two disjoint subsets, M., M, cM ,
we wish to expend M. by similar motifs from a background set M, that do not increase its EC

divergence.

Pseudo code:
1. Find candidates motifs for addition,M __, € M;, , that show strong similarity by sequence to at least

one motifin M ..
2. Calculate the EC distance between every pair of EC vectors in M . UM :
ECdist; =avg(| EC,—EC,|) ;i,jeM . UM,.

3. Create a new candidate subgroup M . . by adding M . asingle motif fromM ;.

4. Calculate M . ,,,’s divergence score: DivScore,,  =avg(ECdist;) ; i<jeMc o

5. Create a new test group M ., by adding M . a single motif from M, M, ,

6. Calculate M c, 8 divergence score.

7. Repeat steps 5, 6 forall je M, #M_,, to generate the empirical distribution of divergence scores
of the test groups.

8. Calculate the probability value for getting the divergence score of M ., by chance.

9. Expend the group by the current motif candidate if it produces a significantly low divergence score
(lower than some preset significance value, @ ).

10. Repeat steps 3-9 for every motif candidate in respect to the original cluster M . .




Fusion of clusters

Clusters will be merged if they share a minimum percentage of motifs and are also found
to be similar in EC. EC distance between two clusters A and B is defined by a Fisher
criterion, as the distance between the centers of the clusters, divided by the sum of their

standard deviations:
Foo= ||/uA _/JB”
o]+ el

4 and up are the mean EC vectors of the two EC matrices (the center of each cluster).
For each cluster we define ¢ as the vector of the 40 standard deviations corresponding to
the 40 EC experiments. Clusters will be merged if their Fisher distance, F, is smaller than
some threshold, as long as they also obey the sequential similarity criterion.
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Figure 4.2 A demonstration of the Fisher criterion. The fisher distance for distant clusters exceeds
the value 1 (A). The smaller the fisher distance is, the more difficult it gets to distinguish between the
clusters (B, C).



Splitting of clusters

Clusters will be split into K smaller clusters if they exceed a given size. Splitting is done
using the K-means algorithm on the EC space of the cluster. After applying this
indiscriminative step, however, a fusion step is applied, so that unnecessary splitting will
be reversed. In this work we have used K=3.

Fine refinement of clusters

The former procedures are applied iteratively in a preset order, to generate clusters that
are rather tight in EC and in sequence and differ from each other in sizes, EC patterns and
motif sequences. In a final pruning step finer parameters are used. Then the improvement
of each cluster is tested with respect to a cluster score, assessing the quality of the cluster,
and the pruning is accepted or rejected accordingly. The clusters are given a cluster
score, a heuristic function encapsulating the various measures used in the analysis:

DivScore

cluster cluster

\/ SeqDivScore

SeqDivScore DivScore

others others

ClusterScore = .
(MC ' Fcluster,others )

SeqDivScore i sier, DivScoreqsier are the cluster’s sequential and EC divergence scores,
respectively (the former is defined similarly to the later, as the average sequential
distance of all pairs of motifs within the cluster). SeqDivScoreers, DivScoreymers are the
sequential and EC divergence scores of all the motifs outside the cluster, respectively.
Feuster.omers 18 the EC fisher distance between the cluster and the rest of the motifs, and
MC is the number of motifs within the cluster. The smaller the cluster score is, the better
the quality of the cluster is considered.

The cluster score quantifies the quality of a cluster in terms of its internal tightness
relatively to the background. As affected by many different factors, the cluster score is
sensitive to noise. Hence it is only used at a late stage along the algorithm, when clusters
are already coherent to a great extent.



Flow of the algorithm

After initiation, cycles of the various iterations occur, gradually improving the clusters
with respect to their sequences and EC patterns. The algorithm stops when the rate of
change of the clusters falls below a certain cutoff (a stopping criterion) or if no clusters
are found. Clusters that are too small (below a preset threshold) are disregarded.

The order of iterations used for clustering our motifs is described below:

Initiation { Defining seeds and initiating clusters (1)
- Pruning motifs (2)
Expendiig clusters (3)
Pruning motifs (2)
Expending clusters (3)
Clustering Fusion of clusters (4)
Iterations Pruning motifs (2)
Expending clusters (3)

Fusion of clusters (4)

Splitting large clusters (5)

\ Fine refinement of clusters (6)

Deleting small clusters (7)

Finalization
Deleting uninformative clusters (8)



Results

5 CLUSTERS

We have clustered a distilled set of motifs, consisting of 694 motifs that have passed the
FDR criterion and have also had at least one EC success with a p-value of 0.001 or lower.
Our algorithm finds 20 clusters, covering a total of 182 motifs. 14 of our clusters have
large overlaps with known clusters.

Table 5.1
Cluster name | Identified as
MS1 MBF / SBF
MS2 MBF / SBF
MS3 MBF / SBF
MS4 MBF / SBF
ST1 STRE
ST2 STRE
P1 PAC
P2 PAC
RR RRPE
R1 RAP1
R2 RAP1
R3 RAP1
Al ADR1 /STRE
RP RPN4
Cl15 Unknown
Cle6 Unknown
Cl17 Unknown
C18 Unknown
Cl19 Unknown
C20 Unknown




6 EC PATTERNS OF CLUSTERS

Figure 6.1
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7 LOCALIZATION OF MOTIFS ALONG PROMOTERS

Black lines indicate, for each position upstream to the genes (up to -500bp), the
percentage of promoters on which the cluster’s sequences have been found. This can be
compared to the localization of sampled groups of motifs (of the same sizes as those of
the clusters in question) out of the set of 694 motifs. For each cluster, the dark gray line
shows the mean motif occurrence per position over 1000 such sampled groups, while the
light gray area represents the samples’ standard deviation of occurrences per position.
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8 FISHER DISTANCES BETWEEN CLUSTERS
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Figure 8.1 Fisher distances between clusters. On the diagonal (where F=0) we have added the mean
F-values obtained by randomly dividing each of the clusters into two arbitrary ones (mean over 100
random divisions for each cluster).



9 INTERSECTIONS BETWEEN SETS OF GENES OF COUPLES OF CLUSTERS
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Figure 9.1 Intersections between sets of genes of couples of clusters. The percentage of common genes
between cluster i and cluster j, out of cluster i (i in rows, j in columns).

i=j 2 The number of genes on the promoter of which the clusters motifs are found (the color on the
diagonal is set as 100%, in respect to the rest of the matrix).
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Figure 9.2 Intersections between sets of genes of couples of clusters.
i#j = The number of common genes between cluster i and cluster j.

i=j = The number of genes on the promoter of which the clusters motifs are found.



10 COMPARING MEX TO ALTERNATIVE APPROACHES

Comparison of applying the MEX algorithm, followed by EC to an exhaustive k-
mer enumeration followed by EC

1,873/8,498 (22 %) of MEX’s extracted motifs had a significant EC score (passed FDR
of 0.1) in at least one of the examined biological conditions. For comparison, in an
exhaustive enumeration of all k-mers of length 7-11 residing in yeast promoters (Shalgi
et al 2005, Lapidot & Pilpel in prep), we produced 1,510,057 hypotheses, only
8,610(0.6%) of which scored significantly under the same FDR cutoff. In other words we
see a striking enhancement in the probability of a k-mer to pass an EC test if it was pre-
selected by MEX as a motif that obeys some syntactic rules.

There was an overlap of 849 motifs between the motif sets obtained by the two
approaches. 1024 (55%) of MEX’s motifs were not discovered by the exhaustive
approach (Figure 10.1A). These are mostly weaker motifs, that could not be identified
within a very noisy background; MEX provides an enrichment in signal which relaxes the
p-value thresholds set by FDR, allowing for weaker motifs to be detected as significant.
In addition, MEX extracted sequence motifs of length up to 19 nucleotides. 57 of the
unique MEX motifs were longer than 11 bases, and thus were not even scanned by the
exhaustive approach (Figure 10.1B). Expanding the exhaustive enumeration to larger
sequence lengths is extremely expensive computationally, whereas MEX is easily
scalable to longer sequences and to larger genomes. Motifs that were detected by the
exhaustive approach, but not by MEX most likely do not obey the inherent position
dependencies, selected for by MEX (figure 10.1C). It has been reported that some, but
not all functional TFBS display such position dependencies (Tomovic et al.
Bioinformatics 2007). The relative success of MEX in identifying high scoring motifs
suggests however that there are some syntactic rules that characterize functional binding
sites. This thought is intriguing because it implies that we may be able to identify at least
some of the TF binding sites based on their sequence context alone.

Coverage of the Harbison PSSM set

To estimate the comprehensiveness of our MEX-extracted motif set, we examined its
coverage of the well accepted reference PSSM set published by Harbison et al. We
scanned each of the 1,873 motifs of the MEX-extracted set, as well as each of the 8,610
motifs of the exhaustive enumeration set against all 102 Harbison PSSMs. We applied a
scoring method that assesses how likely a given k-mer is to be generated by a given
PSSM. For each pair of known PSSM and k-mers we summed up the frequencies
corresponding to the nucleotides observed in the k-mer, over all PSSM relevant positions.
This score was then scaled to the range [0-100] by subtracting the minimal possible score
that may be obtained from the PSSM (that is, the score obtained for a k-mer that
corresponds to the least frequent position in each column of the PSSM) and dividing by
the range of possible scores (obtained after additionally identifying the maximal possible
scoring k-mer from that PSSM). Applying a cutoff of 99% identity, 16% of the
exhaustive set provide a coverage of 91% of Harbison’s PSSMs, and 45% of the MEX
set, cover 66% of the Harbison set. Namely MEX is not as comprehensive as the
exhaustive set, but it is enriched in signal and contains less false positives. Table 10.1



summarizes the coverage of the Harbison set by the MEX-extracted motifs when
applying different cutoffs.

A MEX: 1873/8498 (22%)
Exhaustive: 8610/1,510,057 (0.05%)
B C example

0.45 Novel MEX i
04 Covered by exhaustive = 1 A ERUEO
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Figure 10.1 Comparison between motif sets obtained by the exhaustive approach versus the syntax
based approach (MEX). A. Overlap between motif sets obtained by exhaustive enumeration and by
MEX. B. Length distribution of MEX motifs that are covered by the exhaustive search versus novel
MEX motifs. MEX has a clear advantage in identifying longer motifs, for which the exhaustive
search is computationally too demanding. There are also motifs in the length range of 7-11 which
scored significantly when pre-selected by MEX, and not in the exhaustive dictionary. These motifs
are weaker and when embedded in a very noisy background (of all possible k-mers), their score is not
high enough to pass the threshold set by FDR.C. Motifs in which there are no clear inter-position
dependencies will be missed by MEX. MEX learns simple syntax rules from the promoter sequences
and searches for motifs that obey these rules.



Comparison score cutoff | Coverage of MEX motifset | Coverage of known | Unique known clusters
99% 837/1873=45% 63/102=61% 51/77=66%
98% 866/1873=46% 68/102=67% 56/77=72%
97% 904/1873=48% 73/102=72% 60/77=78%
95% 996/1873=53% 79/102=77% 65/77=84%

Table 10.1 Coverage of the Harbison PSSM set by the significant motifs extracted by ME. A scoring
method was devised to assess how likely a given string is to be generated from a given PSSM. The
score is on a scale of 0 to 100. It is computed by summing up the frequencies corresponding to the
observed nucleotides over all motif positions, and normalizing this score to a scale of 0-100. The
scaling is done by subtracting the minimal possible score and dividing by the range of possible scores.
For example for the PSSM [A: 0.0191 0.0191 0.9733 0.9733 0.0120, C:0.9500 0.9500 0.0074
0.0074 0.0074, G: 0.0117 0.0117 0.0074 0.0074 0.0074 T:0.0191 0.0191 0.0120 0.0120
0.9733] the lowest possible score 0.0455 is obtained for the string GG(C/G)(C/G)(C/G), the highest
possible score 4.8198 is obtained for the string CCAAT. After scaling GGCCC will score 0%,
CCAAT will score 100% and CCATT will score 79.9% ( (3.8585-0.0455)/( 4.8198-0.0455) ). We
computed this score for each of the significant (based on the EC score analysis) motifs extracted by
MEX versus all 102 Harbison PSSMs. The coverage of Harbison’s motif set was assessed for several
different score cutoffs. Note that one motif may match more than one Harbison PSSM, because of
redundancy in Harbison’s dataset. For comparison 16% to 25% of the exhaustive set provide a
coverage of 91% to 97% of the Harbison set, depending on the cutoff employed. There are two very
long (17 and 18 positions) gapped motif in Harbison’s set, for which we have no match, because the
dictionary only covers motifs of length 7-11.




