
Supplementary Materials

Methods... 1

1 Motif Extraction algorithm (MEX)... 1

2 Expression Coherence (EC) Method .. 6

3 Expression Data .. 8

4 Clustering Algorithm .. 9

Results... 15

5 Clusters ... 15

6 EC patterns of clusters .. 16

7 Localization of motifs along promoters.. 20

8 Fisher distances between clusters ... 23

9 Intersections between sets of genes of couples of clusters 24

10 Comparing MEX to alternative approaches.. 26

Methods

1 MOTIF EXTRACTION ALGORITHM (MEX)

MEX is a motif extraction algorithm that extracts statistically significant motifs from

sequential data. MEX is a data driven unsupervised algorithm, hence does not need any

preprocessing of the data or additional information apart from the data set itself.

Furthermore, MEX finds motifs that are not necessarily over-represented in the data.

MEX was originally developed in a linguistic context, as a distillation tool for extracting

words from corpora of natural language. As more intuitive, let us first describe the

algorithm in its original context.

Consider a corpus of sentences, whose word delimiters have been removed (such as

spaces, capital letters, punctuations, etc.). The problem at hand is to uncover the words

that have originally constructed the sentences. MEX receives as an input such corpus,

consisting of many sequences of a given finite alphabet of size N (e.g. N=26 letters in the

English alphabet, N=20 amino acids in proteins and N=4 nucleic acids in the case of

DNA). The algorithm uses a directed graph, whose vertices, V, are composed of the

letters of the given alphabet, in addition to a ‘begin’ and an ‘end’ vertices. A set of

ordered pairs of vertices (directed edges) represent the order in which the letters appear in

the corpus. For example, the edge e(t,h), represents a connection from the vertex ‘t’ to the

vertex ‘h’, which means that the letter ‘h’ appears at some point along the corpus after the

letter ‘t’. MEX loads the given corpus onto a directed graph, one sentence after the other.

The edges representing each sentence are built, starting with the ‘begin’ vertex, followed

by the letters composing the sentence, one after the other, and ending with the ‘end’

vertex. This way, ordered paths are created in the graph, such that each sentence is

represented by a path. Each path is saved by MEX and will be used as a search path for

patterns. This procedure is demonstrated in figure 1.1.

Figure 1.1 MEX loads the corpus onto a directed graph, one sentence after the other. The graph is

composed of vertices representing the letters of the given alphabet, in addition to two vertices

representing the beginnings and the endings of sentences (A). One sentence at a time, directed edges

are added to the graph, representing the order in which letters appear in each sentence (B-D). The

ordered edges composing a sentence are considered a path along the graph. In this example, four

paths are loaded onto the graph: ‘alicewas’ (blue path), ‘isalice’ (light green path), ‘saidalice’

(turquoise path) and ‘alicein’ (red path), one after the other.

A) B)

D) C)

alice was

is alice
said alice to

alice in . . .

Once the entire corpus has been represented as search paths on a directed graph, the

algorithm starts searching for statistically significant patterns. Intuitively, for each search

path MEX looks for sub-paths that may be considered as candidates for being significant

patterns. A sub-path that represents a significant pattern is expected to be shared by other

paths throughout the graph, such that these paths will converge into the sub-path at its

first vertex, form a bundle along the sub-path and scatter after the sub-path’s last vertex.

This follows the assumption that at different instances of a given word throughout the

corpus, after the word ends, it is likely to find many different possible words following it.

In such a case many paths will form a bundle along the sub-path representing the word

and scatter immediately after it ends. The vertex after which such a divergence occurs

may be considered as the last vertex of the pattern. A similar notion underlies the way

MEX searches the start points of patterns, by looking for a divergence of a bundle while

going leftwards through a search path. Figure 1.2 demonstrates this idea. The four paths

in figure 1.2 converge and form a bundle along the sub-path ‘a→l→i→c→e’, after which

they diverge.

This can be rephrased into a probabilistic language; for each search path (sentence) that is

to be explored for patterns, two probability functions are defined, based on information

inheres in the complete graph. The first one, PRight, is the right moving ratio of the

through-going flux of paths to the incoming flux of paths, which varies along the search

path. Starting at the vertex e1 we define PRight at e2 as:

total no. of paths passing from e1 to e2 () () == 1221 |, eepeePRight
total no. of paths entering e1

At e3 PRight becomes:

total no. of paths passing from e1 through e2 to e3 () () == 21331 |, eeepeePRight
total no. of paths passing from e1 to e2

And generally:

total no. of paths passing from ei up to ej-1 and continue to ej () ()== −++ 121|, jiiijjiRight eeeeepeeP �
total no. of paths passing from ei up to ej-1

Similarly, a second function, PLeft, is defined as we proceed leftward from some vertex ej

down the search path towards the vertex ei and examine the left-going ratio of the

through-going flux of paths to the incoming flux of paths:

total no. of paths passing from ei to ej () ()== −++ jjiiiijLeft eeeeepeeP 121|, �
total no. of paths passing from ei+1 to ej

Figure 1.2 A partial view of the graph used by MEX. The search path no. 1, ‘alicewas’ (blue line),

shares the sub-path ‘a→l→i→c→e’ with three other paths: ‘isalice’ (2), ‘saidalice’ (3) and ‘alicein’

(4). The four paths form a bundle that may constitute a significant pattern. The conditional

probabilities PRight and PLeft, originating at the vertices ‘a’ and ‘e’, respectively, are illustrated for the

example shown here. A sharp drop in the right moving probability, PRight, indicates that the paths

constructing the bundle have scattered, thus may denote the end of the pattern. Similarly, a sharp

drop in PLeft may indicate the beginning of the pattern, hence reveal the pattern ‘alice’.

Table 1.1 Calculating right-going conditional probebilities for the search path ‘alicewasbegining...’.

Probablities are calculated for a given serach path, based on information inheres in the entire graph.

The corpus used in this example was the sentences from Alice in wonderland, by Lewis Carroll.

Vertex Conditional Probability Expression PRight

a P(a) = 8770 / 109625 0.08

l P(al | a) = 1046 / 8770 0.12

i P(ali | al) = 486 / 1046 0.45

c P(alic | ali) = 397 / 486 0.85

e P(alice | alic) = 397 / 397 1

w P(alicew | alice) = 48 / 397 0.12

a P(alicewa | alicew) = 21 / 48 0.44

s P(alicewas | alicewa) = 17 / 21 0.81

b P(alicewasb | alicewas) = 2 / 17 0.12

e P(alicewasbe | alicewasb) = 2 / 2 1

g P(alicewasbeg | alicewasbe) = 2 / 2 1

.

.

.

.

.

.

.

.

.

1
2

3

4

MEX calculates PRight from different starting points to each vertex down the search path.

Going rightwards through a sub-path that represents a significant pattern, it is expected

that PRight will first increase since other paths join the search path to form a coherent

bundle, and then decrease as many paths leave the search path.

In order to demonstrate this, let us examine as a toy problem the corpus of Alice in

wonderland, by Lewis Carroll. MEX has received as an input the sentences within Alice

in wonderland, after all word delimiters have been removed. Going through the first

search path ‘alicewasbeginningtogetverytired...’ MEX calculates the rightward-going

probabilities, PRight, along the path, as demonstrated at table 1.1. MEX starts at the first

vertex ‘a’ and calculates the probability of its appearance in the corpus, PRight(a); as ‘a’

appears in 8770 cases out of the total of 109625 letters in the corpus, PRight(a)= 109625
8770 =0.08.

MEX continues to the next vertex ‘l’, calculating the probability of its appearance after

the previous vertex, i.e. PRight(al|a); in this case, ‘l’ appears 1046 times after the 8770

instances of ‘a’, hence PRight(al|a)= 8770
1046 =0.12. MEX continues calculating the rightward-

going probabilities PRight(ali|al), PRight(alic|ali) and so on, up to the end of the search path.

As can be seen in table 1.1, the rightward-going probabilities initially rise and then drop

sharply. Such a dramatic drop may occur owing to the sudden divergence of a coherent

bundle, and will be considered as a candidate for terminating a pattern.

We will define the end of a motif as the vertex after which a dramatic drop in the right-

moving probabilities is apparent (expressing the divergence of edges from that vertex),

and the beginning of a motif as a dramatic drop in the left moving probabilities

(expressing the convergence of edges to that vertex).

Formally, let us define a “decrease ratio”:

()
()
()

1,

,
,

−

=
jiRight

jiRight

jiRight
eeP

eeP
eeD

()
()
()

1,

,
,

+

=
ijLeft

ijLeft

ijLeft
eeP

eeP
eeD

We will declare ej-1 as a candidate end point of the pattern if DRight(ei,ej) is smaller then a

preset cutoff parameter η<1. Similarly, ei+1 will be declared as candidate start point of a

pattern if DLeft(ej,ei)<η.

The statistical significance of the decreases in PRight and PLeft must be evaluated. PRight

and PLeft can be regarded as variable-order Markov probability functions. We can define

their significance in terms of a null hypothesis stating that PRight(ei,ej) ≥ ηPRight(ei,ej-1) and

PLeft(ej,ei) ≥ ηPLeft(ej,ei+1), and require that the p-values of both DRight(ei,ej)<η and

DLeft(ej,ei)<η be, on average smaller than a preset threshold parameter α<1.

A bundle of coinciding paths whose end-points obey these significance conditions is

declared as a possibly significant pattern. Given a search path, we calculate both PRight

and PLeft from all of the possible starting points, traversing each path leftward and

rightward, correspondingly. This technique defines many search-sections, which may be

candidates for significant patterns. The most significant ones of these candidates are

returned as the outcome patterns for the search path in question.

2 EXPRESSION COHERENCE (EC) METHOD

Rational
The Expression coherence (EC) score is a measure of how clustered a set of genes is in

expression space. It may be defined for any gene set for which expression profiles are

available. Given an expression profile of N time points for M genes, each gene can be

thought of as a point in an N dimensional space, where the ith dimension has the

expression level of the gene at the ith time point (Figure 2.1). Given a set of genes, one

wishes to determine whether they are tightly clustered, or rather spread "all over the

place". One way to accomplish this could be to calculate the "center of mass" of the cloud

of genes and then sum over distances of each gene from it (other variations may be to

sum over squares of such distances, take standard deviation around that mean etc). Yet,

this measure has a clear shortcoming - in cases where the gene cluster is split, say to two,

equally sized very tightly clustered subsets, that are yet remote from one another, any

deviation-from-mean score will be low. This fails to capture the unique substructure of

this gene set, which is composed of two tight sub-clusters. The intuitive reason why this

gene set is 'impressive' is that out of P=M*(M-1)*0.5 gene pairs in it p=(M/2)*((M/2)-1)

pairs are close (defined below) to each other. So the ratio p/P is a good measure for how

tight the cluster is . This is the expression coherence score (see figure 2.1 for illustration).

Biological relevance

Applying the EC score to a set of genes that share a given motif in their promoters, gives

a measure of the extent to which the motif may influence expression. Moreover it allows

to functionally annotate the motif, by describing the biological conditions in which it

governs coherent expression, along with the regulatory effect it exerts (e.g. increased

expression in response to a particular stress, or peak in expression at a specific pint

during cell cycle). Such analyses can be performed online for the S. cerevisiae genome,

via the Motif Analysis Workbench (Lapidot and Pilpel 2003) at

http://longitude.weizmann.ac.il/services.html

Algorithm
Given a gene set S , we compute the Euclidean distances between the centered and

variance-normalized expression profiles of each of its P=|S|*(|S|-1)*0.5 gene pairs. The

EC score is defined as p/P where p is the number of gene pairs whose Euclidian distance

is smaller than a threshold distance (D). D is determined based on the distribution of pair-

wise distances between expression profiles of all genes in the genome (or more precisely

of all genes for which expression level was measured). The original definition of the EC

score (Pilpel et al Nat. Genet. 2001) used the 5th percentile as the cutoff for defining

“close” expression profiles, but other cutoffs may be applied.

()
{ }

() 21

),(:,

÷−∗

<∈
=

≠

SS

DggExpDistSgg
SEC

jiiji

1 2
*

*

*
*

*

*

*
* *

*

*
*

*

*
* *

*
*

*
*

*

*
* *

*
*

3 4

EC1=0 EC2=0.66

EC3=0.44 EC4=0.44

*
*

**
*

D

D

D

D

1 2
*

*

*
*

*

*

*
* *

*

*
*

*

*
* *

*
*

*
*

*

*
* *

*
*

3 4

EC1=0 EC2=0.66

EC3=0.44 EC4=0.44

*
*

**
*

D

D

D

D

Figure 2.1 EC scores of different scenarios. To illustrate how the EC score is used to measure the

extent to which genes are clustered in expression space, we show four scenarios; each disc displays

gene sets embedded in a putative expression space. In the first scenario the genes are evenly spread in

expression space, no two genes are closer than the threshold distance D, and thus the EC sore is 0. In

the second scenario, all genes, but one are tightly clustered and thus the EC score is high, 10/15

possible gene pairs are closer than the threshold D. In scenarios 3 and 4, two tight clusters are

observed. The EC score is the same for both cases, despite the fact that the clusters in scenario 3 are

closer to one another. This is because in both cases only genes within each of the two subsets are

closer than the threshold (20/45 gene pairs) whereas any two genes belonging to different subsets are

further away than the threshold. Measures based on distance from the center of mass would not

capture the sub-cluster structure depicted in scenarios 3 and 4.

Estimation of EC Score Significance

The significance of an EC score calculated for a set of genes, relies on the set size and on

the analyzed condition. Thus for each of the expression time series experiments and for

each gene set sizes (varying from 3-100 genes), we selected 100,000 random gene sets

and computed an EC score for each such set at each cutoff definition. We define the p-

value of a given EC score as the fraction of random sets (of the same size and in the same

condition) that scored similarly or higher (Note that this sets a lower bound of 10-5 on the

significance that can be assigned to a given EC score). Since we assume that for a given

EC score the probability to get the same score for random sets of genes drops with the set

size, gene sets larger than 100 are assigned an upper bound approximated p-value, using

the randomly sampled sets of size 100.

For large sets of genes even a small deviation from an EC score of 0.05 (the mean value

for random sets) can be statistically significant, whereas for very small sets large

deviations from an EC score of 0.05 can be expected purely by chance, as demonstrated

in (http://bioportal.weizmann.ac.il/~lapidotm/rMotif/html/doc/ECscore.html).

3 EXPRESSION DATA

Table 3.1

Experiment short name Experiment name
1

Cell cycle (1) ExpressDB Cho - cell cycle

Cell cycle (2) ExpressDB Spellman - cell-cycle alpha

Cell cycle (3) ExpressDB Spellman - cell-cycle cdc15

Cell cycle (4) ExpressDB Spellman - cell-cycle cdc28

Cell cycle (5) ExpressDB Spellman - cell-cycle eluteration

Sporulation ExpressDB Chu - sporulation

MapK ExpressDB - MapK

Diaux shift ExpressDB Gasch environmental response - diaux shift

YPD (1) ExpressDB Gasch environmental response - YPD1

YPD (2) ExpressDB Gasch environmental response - YPD2

X media vs. car1 ExpressDB Gasch environmental response - x media vrs car1

YPx media vs. car2 ExpressDB Gasch environmental response - YPx media vrs car2

Nitrogen depletion ExpressDB Gasch environmental response - Nitrogen Deplation

Amino acid starvation ExpressDB Gasch environmental response - Amino Acid starv

Acid ExpressDB Environmental response - Acid

Alkali ExpressDB Environmental response - Alkali

Diamide ExpressDB Gasch environmental response - diamide

Hydrogen Peroxide (H2O2) ExpressDB Environmental response - Peroxide

Constant H2O2 ExpressDB Gasch environmental response - constatnt h2o2

Menadione ExpressDB Gasch environmental response - Menadione

NaCl ExpressDB Environmental response - NaCl

Hypo-osmotic ExpressDB Gasch environmental response - Hypo-osmotic

DTT (1) Eisen - dtt

DTT (2) ExpressDB Gasch environmental response - DTT1

DTT (3) ExpressDB Gasch environmental response - DTT2

Sorbitol (1) ExpressDB Environmental response - Sorbitol

Sorbitol (2) ExpressDB Gasch environmental response - sorbitol

DNA damage Jelinsky - DNA Damage

Cold Eisen - cold

Heat shock (1) ExpressDB Environmental response - Heat

Heat shock (2) Eisen - heat

Heat shock (3) ExpressDB Gasch environmental response - 37-25 shock

Heat shock (4) ExpressDB Gasch environmental response - Heat Shock 1

Heat shock (5) & sorbitol ExpressDB Gasch environmental response - hs 29-33 1m sorbitol

Heat shock (6) ExpressDB Gasch environmental response - hs 29-33

Heat shock (7) ExpressDB Gasch environmental response - hs 29-33 No sorbitol

Heat shock (8) ExpressDB Gasch environmental response - Heat Shock2 (3 time zero)

Heat shock (9) ExpressDB Gasch environmental response - hs various temp to 37c

Various temp growth ExpressDB Gasch environmental response - various temp growth

Various temp steady state ExpressDB Gasch environmental response - var temp steady state

1
 Whole-genome mRNA expression data of 40 time series experiments in S. cerevisiae, were obtained from

ExpressDB (http://arep.med.harvard.edu/cgi-bin/ExpressDByeast/EXDStart). These time series represent a wide range

of natural (e.g. cell cycle) and perturbed conditions. This set of conditions was utilized by us before (Garten et al.

Nucleic Acids Res 2005) and a complete list of the conditions is available at

http://longitude.weizmann.ac.il/TFLocation/conditions_explist.html

4 CLUSTERING ALGORITHM

We have formulated an iterative method for clustering motifs, according to their

sequences and EC scores information. We first initiate clusters by gathering motifs that

share some building blocks, or `seeds'. Then, a series of iterations improves the clusters,

using various procedures detailed below. The clusters refinement steps include the

addition and removal of motifs from existing clusters and splitting and merging of

clusters. We have quantified the quality of clusters using several criteria associated with

sequential patterns and EC score patterns of the motifs. The metrics as well as the

refinement steps are listed below.

The clustering algorithm may be used to cluster any type of sequential data that are

linked to numerical data. The input to the algorithm is a set of sequences of a given

alphabet (e.g. motifs) and a complementary set of vectors (e.g. EC vectors), holding an

additional information that needs to be taken into account in the clustering process.

Our clustering method may be considered ‘fuzzy’ in the sense that single motifs may

belong to several clusters. Additionally, not all motifs must be clustered and may be left

as singletons.

Initiating clusters by seeds

Our set of motifs was scanned to find short strings of nucleotides (of length 6) that appear

within at least three motifs, to be called `seeds'. Selecting all motifs that contain a given

seed defines a preliminary cluster.

Pruning clusters to increase EC tightness

For each motif one defines an EC vector of length 40 whose entries specify the p-values

of significantly successful EC experiments (that had passed the FDR criterion). Let us

define the space of all these vectors as EC space and define an EC divergence measure

for a cluster of motifs as the average distance of all pairs of its EC vectors. In order to

decide whether to eliminate a motif from a given cluster, we ask whether its presence

increases the divergence of the cluster. To decide whether a motif m should be eliminated

from a cluster MC, we compare the EC divergence of MC with the empirical distribution

of EC divergence scores resulting from replacing m with every one of the motifs that lie

outside the cluster MC (that is, with a background sample MB). The motif will be pruned

from the cluster if it does not significantly reduce the cluster’s EC divergence, in

comparison to motifs from the random background. The deletion of motifs from a cluster

occurs after all motifs have been tested, thus the order of tested motifs does not affect

their chances of remaining in the cluster. A pseudo code describing this procedure is

available in box 4.1. An example is shown in Figure 4.1.

Figure 4.1 An example for testing the contribution of a specific motif to the cluster’s tightness. The

EC-divergence score of the cluster including the motif AAACGCGAAAA (black triangle) is

compared to the empirical distribution of EC-divergence of clusters, in which the motif in question

has been replaced with random motifs (histogram). Our null hypothesis claims that the motif does

not reduce EC-divergence of the group (which is equivalent to saying that the motif harms the

tightness of the cluster). In this example, however, the divergence-score of the cluster with the motif

included in it is very small. Hence, we can reject the null hypothesis with a probability value of 0.001

and include the motif in the cluster.

Box 4.1: Pruning clusters to increase EC tightness

Given a set M of motifs, their EC scores vectors, 40ℜ∈∈MiEC , and two disjoint subsets,

MMM BC ⊂, (the cluster in question and a background subset of motifs, respectively), we wish to

eliminate from cluster
CM motifs that increase its EC divergence. We will test the contribution of

CM ’s

motifs to its EC divergence, by comparing them to
BM ’s motifs contribution to

CM ’s EC divergence.

Pseudo code:

1. Calculate the EC distance between every pair of EC vectors in
BC MM ∪ :

|)(| jiij ECECavgECdist −= ;
BC MMji ∪∈,

2. Calculate
CM ’s divergence score:)(ijM ECdistavgDivScore

C
= ;

CMji ∈< .

3. Create a new subgroup
ijM by replacing the i’th motif of

CM with the j’th motif of
BM .

4. Calculate
ijM ’s divergence score.

5. Repeat steps 3, 4 for all
CMi∈ ,

BMj∈ in order to examine the effect of each motif i on
CM ’s

tightness.

6. For each motif
CMi∈ , generate the empirical distribution of divergence scores, as found in the

replacement of motif i with every motif
BMj∈ .

7. For each motif
CMi∈ , calculate the p-value of getting the divergence score of

CM by chance.

8. Compare each p-value to a preset significance valueα .

9. Eliminate motifs that are not significantly reducing the divergence of the group in comparison to the

randomly sampled motifs.

Expanding clusters

We search for new motifs to be added to the cluster without increasing its EC divergence.

To decide whether a motif m should be added to a cluster MC we compare the EC

divergence resulting from its addition (MC+m) with the empirical EC divergence

distribution resulting from additions of each of the motifs lying outside MC (that is, in a

background sample MB), one at a time.

At the same time we also require sequential similarity of the new motif to the ones that

belong to the cluster. The sequential distance between motifs is defined as the edit

distance of their best alignment, not allowing gaps. The sequential distance score, D, is

normalized between 0 and 1, such that D=0 if the short motif is fully contained in the

long one and D=1 if the motifs have no match at all.

A cluster will be expended by motifs that keep its tightness, as well as being strongly

similar to the cluster by sequence. The addition of motifs to a cluster occurs after all

motifs in MB have been tested, thus the order of tested motifs does not affect their chances

of being added to the cluster. A pseudo code is available in box 4.2.

Box 4.2: Expending clusters

Given a set M of motifs, their EC scores vectors, 40ℜ∈∈MiEC and two disjoint subsets, MMM BC ⊂, ,

we wish to expend
CM by similar motifs from a background set

BM that do not increase its EC

divergence.

Pseudo code:

1. Find candidates motifs for addition, M M Bcand ⊂ , that show strong similarity by sequence to at least

one motif in
CM .

2. Calculate the EC distance between every pair of EC vectors in
BC MM ∪ :

|)(| jiij ECECavgECdist −= ;
BC MMji ∪∈, .

3. Create a new candidate subgroup
candCM ,

 by adding
CM a single motif from

candM .

4. Calculate
candCM ,

’s divergence score:)(
, ijM ECdistavgDivScore
candC

= ; candCMji ,∈< .

5. Create a new test group
jCM ,
 by adding

CM a single motif from
candB MM ≠

6. Calculate
jCM ,
’s divergence score.

7. Repeat steps 5, 6 for all
candB MMj ≠∈ to generate the empirical distribution of divergence scores

of the test groups.

8. Calculate the probability value for getting the divergence score of
candCM ,

 by chance.

9. Expend the group by the current motif candidate if it produces a significantly low divergence score

(lower than some preset significance value,α).

10. Repeat steps 3-9 for every motif candidate in respect to the original cluster
CM .

Fusion of clusters

Clusters will be merged if they share a minimum percentage of motifs and are also found

to be similar in EC. EC distance between two clusters A and B is defined by a Fisher

criterion, as the distance between the centers of the clusters, divided by the sum of their

standard deviations:

BA

BA

BAF
σσ

µµ

+

−
=,

µA and µB are the mean EC vectors of the two EC matrices (the center of each cluster).

For each cluster we define σ as the vector of the 40 standard deviations corresponding to

the 40 EC experiments. Clusters will be merged if their Fisher distance, F, is smaller than

some threshold, as long as they also obey the sequential similarity criterion.

Figure 4.2 A demonstration of the Fisher criterion. The fisher distance for distant clusters exceeds

the value 1 (A). The smaller the fisher distance is, the more difficult it gets to distinguish between the

clusters (B, C).

||µA-µB||

||σB ||

||σA ||

||µA-µB||

||σB ||

||σA ||

||µA-µB||

 ||σB ||

 ||σA ||

A

B C

Splitting of clusters

Clusters will be split into K smaller clusters if they exceed a given size. Splitting is done

using the K-means algorithm on the EC space of the cluster. After applying this

indiscriminative step, however, a fusion step is applied, so that unnecessary splitting will

be reversed. In this work we have used K=3.

Fine refinement of clusters

The former procedures are applied iteratively in a preset order, to generate clusters that

are rather tight in EC and in sequence and differ from each other in sizes, EC patterns and

motif sequences. In a final pruning step finer parameters are used. Then the improvement

of each cluster is tested with respect to a cluster score, assessing the quality of the cluster,

and the pruning is accepted or rejected accordingly. The clusters are given a cluster

score, a heuristic function encapsulating the various measures used in the analysis:

()2,otherscluster

others

cluster

others

cluster

FMC

DivScore

DivScore

eSeqDivScor

eSeqDivScor

reClusterSco
⋅

⋅

=

SeqDivScorecluster, DivScorecluster are the cluster’s sequential and EC divergence scores,

respectively (the former is defined similarly to the later, as the average sequential

distance of all pairs of motifs within the cluster). SeqDivScoreothers, DivScoreothers are the

sequential and EC divergence scores of all the motifs outside the cluster, respectively.

Fcluster,others is the EC fisher distance between the cluster and the rest of the motifs, and

MC is the number of motifs within the cluster. The smaller the cluster score is, the better

the quality of the cluster is considered.

The cluster score quantifies the quality of a cluster in terms of its internal tightness

relatively to the background. As affected by many different factors, the cluster score is

sensitive to noise. Hence it is only used at a late stage along the algorithm, when clusters

are already coherent to a great extent.

Flow of the algorithm

After initiation, cycles of the various iterations occur, gradually improving the clusters

with respect to their sequences and EC patterns. The algorithm stops when the rate of

change of the clusters falls below a certain cutoff (a stopping criterion) or if no clusters

are found. Clusters that are too small (below a preset threshold) are disregarded.

The order of iterations used for clustering our motifs is described below:

Defining seeds and initiating clusters (1)

Pruning motifs (2)

Expending clusters (3)

Pruning motifs (2)

Expending clusters (3)

Fusion of clusters (4)

Pruning motifs (2)

Expending clusters (3)

Fusion of clusters (4)

Splitting large clusters (5)

 Fine refinement of clusters (6)

Deleting small clusters (7)

Deleting uninformative clusters (8)

Initiation

Finalization

Clustering

Iterations

 Results

5 CLUSTERS

We have clustered a distilled set of motifs, consisting of 694 motifs that have passed the

FDR criterion and have also had at least one EC success with a p-value of 0.001 or lower.

Our algorithm finds 20 clusters, covering a total of 182 motifs. 14 of our clusters have

large overlaps with known clusters.

Table 5.1

Cluster name Identified as

MS1 MBF / SBF

MS2 MBF / SBF

MS3 MBF / SBF

MS4 MBF / SBF

ST1 STRE

ST2 STRE

P1 PAC

P2 PAC

RR RRPE

R1 RAP1

R2 RAP1

R3 RAP1

A1 ADR1 / STRE

RP RPN4

C15 Unknown

C16 Unknown

C17 Unknown

C18 Unknown

C19 Unknown

C20 Unknown

6 EC PATTERNS OF CLUSTERS

Figure 6.1

7 LOCALIZATION OF MOTIFS ALONG PROMOTERS

Black lines indicate, for each position upstream to the genes (up to -500bp), the

percentage of promoters on which the cluster’s sequences have been found. This can be

compared to the localization of sampled groups of motifs (of the same sizes as those of

the clusters in question) out of the set of 694 motifs. For each cluster, the dark gray line

shows the mean motif occurrence per position over 1000 such sampled groups, while the

light gray area represents the samples’ standard deviation of occurrences per position.

Figure 7.1

8 FISHER DISTANCES BETWEEN CLUSTERS

Figure 8.1 Fisher distances between clusters. On the diagonal (where F=0) we have added the mean

F-values obtained by randomly dividing each of the clusters into two arbitrary ones (mean over 100

random divisions for each cluster).

9 INTERSECTIONS BETWEEN SETS OF GENES OF COUPLES OF CLUSTERS

Figure 9.1 Intersections between sets of genes of couples of clusters. The percentage of common genes

between cluster i and cluster j, out of cluster i (i in rows, j in columns).

i=j ���� The number of genes on the promoter of which the clusters motifs are found (the color on the

diagonal is set as 100%, in respect to the rest of the matrix).

Figure 9.2 Intersections between sets of genes of couples of clusters.

i≠j ���� The number of common genes between cluster i and cluster j.

i=j ���� The number of genes on the promoter of which the clusters motifs are found.

i

j

10 COMPARING MEX TO ALTERNATIVE APPROACHES

Comparison of applying the MEX algorithm, followed by EC to an exhaustive k-

mer enumeration followed by EC

1,873/8,498 (22 %) of MEX’s extracted motifs had a significant EC score (passed FDR

of 0.1) in at least one of the examined biological conditions. For comparison, in an

exhaustive enumeration of all k-mers of length 7-11 residing in yeast promoters (Shalgi

et al 2005, Lapidot & Pilpel in prep), we produced 1,510,057 hypotheses, only

8,610(0.6%) of which scored significantly under the same FDR cutoff. In other words we

see a striking enhancement in the probability of a k-mer to pass an EC test if it was pre-

selected by MEX as a motif that obeys some syntactic rules.

There was an overlap of 849 motifs between the motif sets obtained by the two

approaches. 1024 (55%) of MEX’s motifs were not discovered by the exhaustive

approach (Figure 10.1A). These are mostly weaker motifs, that could not be identified

within a very noisy background; MEX provides an enrichment in signal which relaxes the

p-value thresholds set by FDR, allowing for weaker motifs to be detected as significant.

In addition, MEX extracted sequence motifs of length up to 19 nucleotides. 57 of the

unique MEX motifs were longer than 11 bases, and thus were not even scanned by the

exhaustive approach (Figure 10.1B). Expanding the exhaustive enumeration to larger

sequence lengths is extremely expensive computationally, whereas MEX is easily

scalable to longer sequences and to larger genomes. Motifs that were detected by the

exhaustive approach, but not by MEX most likely do not obey the inherent position

dependencies, selected for by MEX (figure 10.1C). It has been reported that some, but

not all functional TFBS display such position dependencies (Tomovic et al.

Bioinformatics 2007). The relative success of MEX in identifying high scoring motifs

suggests however that there are some syntactic rules that characterize functional binding

sites. This thought is intriguing because it implies that we may be able to identify at least

some of the TF binding sites based on their sequence context alone.

Coverage of the Harbison PSSM set

To estimate the comprehensiveness of our MEX-extracted motif set, we examined its

coverage of the well accepted reference PSSM set published by Harbison et al. We

scanned each of the 1,873 motifs of the MEX-extracted set, as well as each of the 8,610

motifs of the exhaustive enumeration set against all 102 Harbison PSSMs. We applied a

scoring method that assesses how likely a given k-mer is to be generated by a given

PSSM. For each pair of known PSSM and k-mers we summed up the frequencies

corresponding to the nucleotides observed in the k-mer, over all PSSM relevant positions.

This score was then scaled to the range [0-100] by subtracting the minimal possible score

that may be obtained from the PSSM (that is, the score obtained for a k-mer that

corresponds to the least frequent position in each column of the PSSM) and dividing by

the range of possible scores (obtained after additionally identifying the maximal possible

scoring k-mer from that PSSM). Applying a cutoff of 99% identity, 16% of the

exhaustive set provide a coverage of 91% of Harbison’s PSSMs, and 45% of the MEX

set, cover 66% of the Harbison set. Namely MEX is not as comprehensive as the

exhaustive set, but it is enriched in signal and contains less false positives. Table 10.1

summarizes the coverage of the Harbison set by the MEX-extracted motifs when

applying different cutoffs.

7761

Exhaustive: 8610/1,510,057 (0.05%)

MEX: 1873/8498 (22%)

849
1024

7761

Exhaustive: 8610/1,510,057 (0.05%)

MEX: 1873/8498 (22%)

849
1024

7761

Exhaustive: 8610/1,510,057 (0.05%)

MEX: 1873/8498 (22%)

849
1024

6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

length distribution of MEX motifs included in dictionary versus novel

motif length

fr
a
c
ti
o
n
 o
f
m
o
ti
fs

MEX motifs covered by exhastive dictionary

Novel MEX motifs

Novel MEX

Covered by exhaustive

Motif Length

F
ra
c
ti
o
n
 o
f
m
o
ti
fs

6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

length distribution of MEX motifs included in dictionary versus novel

motif length

fr
a
c
ti
o
n
 o
f
m
o
ti
fs

MEX motifs covered by exhastive dictionary

Novel MEX motifs

Novel MEX

Covered by exhaustive

Motif Length

6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

length distribution of MEX motifs included in dictionary versus novel

motif length

fr
a
c
ti
o
n
 o
f
m
o
ti
fs

MEX motifs covered by exhastive dictionary

Novel MEX motifs

Novel MEX

Covered by exhaustive

Motif Length

6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

length distribution of MEX motifs included in dictionary versus novel

motif length

fr
a
c
ti
o
n
 o
f
m
o
ti
fs

MEX motifs covered by exhastive dictionary

Novel MEX motifs

Novel MEX

Covered by exhaustive

6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

length distribution of MEX motifs included in dictionary versus novel

motif length

fr
a
c
ti
o
n
 o
f
m
o
ti
fs

MEX motifs covered by exhastive dictionary

Novel MEX motifs

Novel MEX

Covered by exhaustive

Motif Length

F
ra
c
ti
o
n
 o
f
m
o
ti
fs

AA

CCBB

ACCG

ACGT

ACCG

ACCT

ACGG

ACGT

1 2 3 4

A 1 0 0 0

C 0 1 ½ ?

G 0 0 ½ ?

T 0 0 0 ?

example

No dependency

between positions

3 and 4

C->G,G->T

dependency of

position 4 on 3.

ACCG

ACGT

ACCG

ACGT

ACCG

ACCT

ACGG

ACGT

ACCG

ACCT

ACGG

ACGT

1 2 3 4

A 1 0 0 0

C 0 1 ½ ?

G 0 0 ½ ?

T 0 0 0 ?

example

1 2 3 4

A 1 0 0 0

C 0 1 ½ ?

G 0 0 ½ ?

T 0 0 0 ?

1 2 3 4

A 1 0 0 0

C 0 1 ½ 0

G 0 0 ½½

T 0 0 0 ½

example

No dependency

between positions

3 and 4

C->G,G->T

dependency of

position 4 on 3.

7761

Exhaustive: 8610/1,510,057 (0.05%)

MEX: 1873/8498 (22%)

849
1024

7761

Exhaustive: 8610/1,510,057 (0.05%)

MEX: 1873/8498 (22%)

849
1024

7761

Exhaustive: 8610/1,510,057 (0.05%)

MEX: 1873/8498 (22%)

849
1024

6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

length distribution of MEX motifs included in dictionary versus novel

motif length

fr
a
c
ti
o
n
 o
f
m
o
ti
fs

MEX motifs covered by exhastive dictionary

Novel MEX motifs

Novel MEX

Covered by exhaustive

Motif Length

F
ra
c
ti
o
n
 o
f
m
o
ti
fs

6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

length distribution of MEX motifs included in dictionary versus novel

motif length

fr
a
c
ti
o
n
 o
f
m
o
ti
fs

MEX motifs covered by exhastive dictionary

Novel MEX motifs

Novel MEX

Covered by exhaustive

Motif Length

6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

length distribution of MEX motifs included in dictionary versus novel

motif length

fr
a
c
ti
o
n
 o
f
m
o
ti
fs

MEX motifs covered by exhastive dictionary

Novel MEX motifs

Novel MEX

Covered by exhaustive

Motif Length

6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

length distribution of MEX motifs included in dictionary versus novel

motif length

fr
a
c
ti
o
n
 o
f
m
o
ti
fs

MEX motifs covered by exhastive dictionary

Novel MEX motifs

Novel MEX

Covered by exhaustive

6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

length distribution of MEX motifs included in dictionary versus novel

motif length

fr
a
c
ti
o
n
 o
f
m
o
ti
fs

MEX motifs covered by exhastive dictionary

Novel MEX motifs

Novel MEX

Covered by exhaustive

Motif Length

F
ra
c
ti
o
n
 o
f
m
o
ti
fs

AA

CCBB

ACCG

ACGT

ACCG

ACCT

ACGG

ACGT

1 2 3 4

A 1 0 0 0

C 0 1 ½ ?

G 0 0 ½ ?

T 0 0 0 ?

example

No dependency

between positions

3 and 4

C->G,G->T

dependency of

position 4 on 3.

ACCG

ACGT

ACCG

ACGT

ACCG

ACCT

ACGG

ACGT

ACCG

ACCT

ACGG

ACGT

1 2 3 4

A 1 0 0 0

C 0 1 ½ ?

G 0 0 ½ ?

T 0 0 0 ?

example

1 2 3 4

A 1 0 0 0

C 0 1 ½ ?

G 0 0 ½ ?

T 0 0 0 ?

1 2 3 4

A 1 0 0 0

C 0 1 ½ 0

G 0 0 ½½

T 0 0 0 ½

example

No dependency

between positions

3 and 4

C->G,G->T

dependency of

position 4 on 3.

ACCG

ACGT

ACCG

ACGT

ACCG

ACCT

ACGG

ACGT

ACCG

ACCT

ACGG

ACGT

1 2 3 4

A 1 0 0 0

C 0 1 ½ ?

G 0 0 ½ ?

T 0 0 0 ?

example

1 2 3 4

A 1 0 0 0

C 0 1 ½ ?

G 0 0 ½ ?

T 0 0 0 ?

1 2 3 4

A 1 0 0 0

C 0 1 ½ ?

G 0 0 ½ ?

T 0 0 0 ?

example

No dependency

between positions

3 and 4

C->G,G->T

dependency of

position 4 on 3.

ACCG

ACGT

ACCG

ACGT

ACCG

ACCT

ACGG

ACGT

ACCG

ACCT

ACGG

ACGT

1 2 3 4

A 1 0 0 0

C 0 1 ½ ?

G 0 0 ½ ?

T 0 0 0 ?

1 2 3 4

A 1 0 0 0

C 0 1 ½ ?

G 0 0 ½ ?

T 0 0 0 ?

example

1 2 3 4

A 1 0 0 0

C 0 1 ½ ?

G 0 0 ½ ?

T 0 0 0 ?

1 2 3 4

A 1 0 0 0

C 0 1 ½ 0

G 0 0 ½½

T 0 0 0 ½

example

No dependency

between positions

3 and 4

C->G,G->T

dependency of

position 4 on 3.

Figure 10.1 Comparison between motif sets obtained by the exhaustive approach versus the syntax

based approach (MEX). A. Overlap between motif sets obtained by exhaustive enumeration and by

MEX. B. Length distribution of MEX motifs that are covered by the exhaustive search versus novel

MEX motifs. MEX has a clear advantage in identifying longer motifs, for which the exhaustive

search is computationally too demanding. There are also motifs in the length range of 7-11 which

scored significantly when pre-selected by MEX, and not in the exhaustive dictionary. These motifs

are weaker and when embedded in a very noisy background (of all possible k-mers), their score is not

high enough to pass the threshold set by FDR.C. Motifs in which there are no clear inter-position

dependencies will be missed by MEX. MEX learns simple syntax rules from the promoter sequences

and searches for motifs that obey these rules.

Comparison score cutoff Coverage of MEX motif set Coverage of known Unique known clusters

99% 837/1873=45% 63/102=61% 51/77=66%

98% 866/1873=46% 68/102=67% 56/77=72%

97% 904/1873=48% 73/102=72% 60/77=78%

95% 996/1873=53% 79/102=77% 65/77=84%

Table 10.1 Coverage of the Harbison PSSM set by the significant motifs extracted by ME. A scoring

method was devised to assess how likely a given string is to be generated from a given PSSM. The

score is on a scale of 0 to 100. It is computed by summing up the frequencies corresponding to the

observed nucleotides over all motif positions, and normalizing this score to a scale of 0-100. The

scaling is done by subtracting the minimal possible score and dividing by the range of possible scores.

For example for the PSSM [A: 0.0191 0.0191 0.9733 0.9733 0.0120, C:0.9500 0.9500 0.0074

0.0074 0.0074, G: 0.0117 0.0117 0.0074 0.0074 0.0074 T:0.0191 0.0191 0.0120 0.0120

0.9733] the lowest possible score 0.0455 is obtained for the string GG(C/G)(C/G)(C/G), the highest

possible score 4.8198 is obtained for the string CCAAT. After scaling GGCCC will score 0%,

CCAAT will score 100% and CCATT will score 79.9% ((3.8585-0.0455)/(4.8198-0.0455)). We

computed this score for each of the significant (based on the EC score analysis) motifs extracted by

MEX versus all 102 Harbison PSSMs. The coverage of Harbison’s motif set was assessed for several

different score cutoffs. Note that one motif may match more than one Harbison PSSM, because of

redundancy in Harbison’s dataset. For comparison 16% to 25% of the exhaustive set provide a

coverage of 91% to 97% of the Harbison set, depending on the cutoff employed. There are two very

long (17 and 18 positions) gapped motif in Harbison’s set, for which we have no match, because the

dictionary only covers motifs of length 7-11.

